首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15095篇
  免费   1375篇
  国内免费   507篇
化学   2842篇
晶体学   77篇
力学   7057篇
综合类   90篇
数学   2571篇
物理学   4340篇
  2024年   5篇
  2023年   142篇
  2022年   190篇
  2021年   307篇
  2020年   385篇
  2019年   305篇
  2018年   348篇
  2017年   384篇
  2016年   419篇
  2015年   456篇
  2014年   592篇
  2013年   1083篇
  2012年   756篇
  2011年   1002篇
  2010年   668篇
  2009年   874篇
  2008年   834篇
  2007年   870篇
  2006年   775篇
  2005年   679篇
  2004年   687篇
  2003年   582篇
  2002年   529篇
  2001年   399篇
  2000年   409篇
  1999年   347篇
  1998年   350篇
  1997年   349篇
  1996年   276篇
  1995年   267篇
  1994年   246篇
  1993年   220篇
  1992年   217篇
  1991年   164篇
  1990年   147篇
  1989年   118篇
  1988年   111篇
  1987年   69篇
  1986年   73篇
  1985年   78篇
  1984年   72篇
  1983年   37篇
  1982年   79篇
  1981年   25篇
  1980年   12篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1971年   6篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 290 毫秒
991.
Cardiovascular diseases are one of the major causes of long‐term morbidity and mortality in human beings. The nearly epidemic increase in prevalence of such diseases poses a serious threat to public health and calls for efficient methods of diagnosis and treatment. Non‐invasive diagnostic procedures such as MRI are often used in this context; however, these are limited in terms of spatial and temporal resolution and do not provide information on time‐dependent pressures and wall shear stresses—key quantities considered to be partially responsible for the formation and development of related pathologies. The present study is concerned with the numerical simulation of oscillatory flow through the abdominal aortic bifurcation. Computational fluid dynamics simulation of oscillatory flow in a branched geometry at high Reynolds numbers poses considerable challenges. The present study reports a detailed comparison of simulations performed with a finite volume and a finite element method, two approaches with significant differences in their discretization strategy, treatment of boundary conditions and other numerical aspects. Both solvers were parallelized, using loop parallelization of the BiCGStab linear solver for the finite volume and domain decomposition based on the Schur complement method for the finite element technique. The experience gained with these two approaches for the solution of flow in a bifurcation forms the focus of this study. Although similar results were obtained for both methods, the computation time required for convergence was found to be significantly smaller for the finite element approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
992.
The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of slip eccentric spherical particle‐in‐cell models with Happel and Kuwabara boundary conditions is investigated. A linear slip, Basset type, boundary condition on the surface of the spherical particle is used. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on the particle and fictitious spherical envelope. The boundary conditions on the particle's surface and fictitious spherical envelope are satisfied by a collocation technique. Numerical results for the normalized drag force acting on the particle are obtained with good convergence for various values of the volume fraction, the relative distance between the centers of the particle and fictitious envelope and the slip coefficient of the particle. In the limits of the motions of the spherical particle in the concentric position with cell surface and near the cell surface with a small curvature, the numerical values of the normalized drag force are in good agreement with the available values in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
Temperature modulated differential scanning calorimetry (TMDSC), the most recent development that adds periodic modulation to the conventional DSC, has recently seen a fast growth due to availability of commercial instrumentation. The use of the technique necessitates a total control of all of the experimental parameters. The paper focuses on recent applications to investigate polymers [1].This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
994.
Hypersonic aerospace vehicles are exposed to extreme flight conditions with heavy contour loads during their mission. Especially at ridges and sharp corners, the wall heat flux and pressure may cause serious damage to the body. Sometimes, the surface material cannot resist the high loading and fails completely. In this work the laminar hypersonic flow over forward and backward facing steps is investigated by CFD techniques and the results are compared with experimental data. The selected flow conditions correspond to cold hypersonic flow according to the availability of experimental data. The Navier-Stokes equations in the high temperature gas approximation of a thermally perfect gas in local equilibrium serve as the model for the physical problem. A multiblock finite-volume method is used to discretize consistently all spatial derivatives appearing in the balance equations. A second order in space Godunov-type method is utilized for the non-diffusive part of the governing equations whereas centered differences are used for the diffusive part. Time integration is performed by a second order implicit scheme. In each time step, the resulting nonlinear system of equations is solved by Newton's method employing a relaxation scheme based on conjugate gradients for the linear equation system. The results obtained permit a close insight into the physics of the flow problems under consideration and by this provide valuable information for construction concepts of hypersonic vehicles. Besides a careful comparison of the numerical results with experimental data, numerical aspects like the grid influence are addressed. Received 9 November 1998 / Accepted 2 December 1999  相似文献   
995.
The magnetic body force in boiling two-phase temperature-sensitive magnetic fluid (TSMF) flow is known to effectively increase the driving force of magnetic fluid in a non-uniform magnetic field. Based on this mechanism, in the present study, a binary TSMF, which is a mixture of the TSMF and a low-boiling-saturation-temperature organic solution, is proposed to be used in a heat transport device to enhance its circulation. In order to see its performance in the heat transport device, the pressure difference at different heated temperatures, magnetic fields and inclination angles of the heating section are investigated experimentally and theoretically. Results showed that the driving force increases remarkably due to more gas phase appearing in the test fluid and the magnetization of it decreasing. At low magnetic field the driving force is enhanced greatly when the inclination angle is close to 60°, while at high magnetic field the driving force is remarkably enhanced due to the effect of the magnetic force in the inclination angle range from 0° to 30° and 60° to 90°.  相似文献   
996.
This paper deals with the modelling and numerical simulation of isothermal bubbly flows with multi-size bubbles. The study of isothermal bubbly flows without phase change is a first step towards the more general study of boiling bubbly flows. Here, we are interested in taking into account the features of such isothermal flow associated to the multiple sizes of the different bubbles simultaneously present inside the flow. With this aim, several approaches have been developed. In this paper, two of these approaches are described and their results are compared to experimental data, as well as to those of an older approach assuming a single average size of bubbles. These two approaches are (i) the moment density approach for which two different expressions for the bubble diameter distribution function are proposed and (ii) the multi-field approach. All the models are implemented into the NEPTUNE_CFD code and are compared to a test performed on the MTLOOP facility. These comparisons show their respective merits and shortcomings in their available state of development.  相似文献   
997.
In this paper, we use the laminar viscous flow in a lid‐driven cavity as an example to describe and verify a numerical scheme for non‐linear partial differential equations. The proposed scheme combines a new analytical method for strongly non‐linear problems, namely the homotopy analysis method, with the multigrid techniques. A family of formulas at different orders is given. At the lowest order, the current approach is the same as the traditional multigrid methods. However, our high‐order scheme needs a fewer number of iterations and less CPU time than the classical ones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
998.
A question of flow around an obstacle leads to an optimal control problem. If an optimum path exists, then it is calculable from the Pontryagin principle. The optimum is verified to be reached, using a discretization of the problem.  相似文献   
999.
We investigate two different discretization approaches of a model optimal-control problem, chosen to be relevant for control of instabilities in shear flows. In the first method, a fully discrete approach has been used, together with a finite-element spatial discretization, to obtain the objective function gradient in terms of a discretely-derived adjoint equation. In the second method, Chebyshev collocation is used for spatial discretization, and the gradient is approximated by discretizing the continuously-derived adjoint equation. The discrete approach always results in a faster convergence of the conjugate-gradient optimization algorithm. Due to the shear in the convective velocity, a low diffusivity in the problem complicates the structure of the computed optimal control, resulting in particularly noticeable differences in convergence rate between the methods. When the diffusivity is higher, the control becomes less complicated, and the difference in convergence rate reduces. The use of approximate gradients results in a higher sensitivity to the degrees of freedom in time. When the system contains a strong instability, it only takes a few iteration to obtain an effective control for both methods,even if there are differences in the formal convergence rate. This indicates that it is possible to use the approximative gradients of the objective function in cases where the control problem mainly consists of controlling strong instabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1000.
一个更新过程的两个随机变量的分布:间隔分布、计数分布是1—1对应的,但由间隔分布求对应的计数分布的问题尚未很好地解决。在道路断面观测交通流可得到一更新过程,车头时距和车辆到达分别是其间隔和计数。时距分布容易观测得到,而到达分布的观测却较难。因此上述数学问题的解决对交通流理论是非常有意义的,本文将研究之。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号